Connectivity Homology Enables Inter-Species Network Models of Synthetic Lethality
نویسندگان
چکیده
Synthetic lethality is a genetic interaction wherein two otherwise nonessential genes cause cellular inviability when knocked out simultaneously. Drugs can mimic genetic knock-out effects; therefore, our understanding of promiscuous drugs, polypharmacology-related adverse drug reactions, and multi-drug therapies, especially cancer combination therapy, may be informed by a deeper understanding of synthetic lethality. However, the colossal experimental burden in humans necessitates in silico methods to guide the identification of synthetic lethal pairs. Here, we present SINaTRA (Species-INdependent TRAnslation), a network-based methodology that discovers genome-wide synthetic lethality in translation between species. SINaTRA uses connectivity homology, defined as biological connectivity patterns that persist across species, to identify synthetic lethal pairs. Importantly, our approach does not rely on genetic homology or structural and functional similarity, and it significantly outperforms models utilizing these data. We validate SINaTRA by predicting synthetic lethality in S. pombe using S. cerevisiae data, then identify over one million putative human synthetic lethal pairs to guide experimental approaches. We highlight the translational applications of our algorithm for drug discovery by identifying clusters of genes significantly enriched for single- and multi-drug cancer therapies.
منابع مشابه
Towards Content Distribution in Opportunistic Networks
Opportunistic networking is a new communication paradigm. Content Distribution in opportunistic networks is challenging due to intermittent connectivity, short connection durations and a highly dynamic topology. Research is needed to develop new applications and protocols that can distribute content in opportunistic networks. This thesis explores and evaluates approaches to developing mobile P2...
متن کاملENERGY AWARE DISTRIBUTED PARTITIONING DETECTION AND CONNECTIVITY RESTORATION ALGORITHM IN WIRELESS SENSOR NETWORKS
Mobile sensor networks rely heavily on inter-sensor connectivity for collection of data. Nodes in these networks monitor different regions of an area of interest and collectively present a global overview of some monitored activities or phenomena. A failure of a sensor leads to loss of connectivity and may cause partitioning of the network into disjoint segments. A number of approaches have be...
متن کاملاستفاده از تئوری مدارهای الکتریکی جهت شناسایی کریدورهای مهاجرتی بین پناهگاههای حیات وحش موته و قمشلو در استان اصفهان
Modeling of ecological connectivity across landscape is important for understanding a wide range of ecological processes. Modeling ecological connectivity between habitats and incorporating these models into conservation planning require quantifying the effect of spatial patterns of landscape on the degree of habitats connectivity. Recently, concepts from electrical circuit theory have been ad...
متن کاملکاربرد تئوری گرف در مطالعات اکولوژی سیمای سرزمین نمونه موردی: سنجش پیوستگی زیستگاههای کلانشهر ملبورن
A new method to quantify, monitore and assess ecological structures and functions is the application of graph theory. In ecology, this theory demonstrates its suitable application in assessment of ecological connectivity. Connectivity is the structural attribute of landscape which facilitates the species movement among their habitats. Using graph theory, this paper aims to assess the connectivi...
متن کاملNetwork integrity of the parental brain in infancy supports the development of children’s social competencies
The cross-generational transmission of mammalian sociality, initiated by the parent's postpartum brain plasticity and species-typical behavior that buttress offspring's socialization, has not been studied in humans. In this longitudinal study, we measured brain response of 45 primary-caregiving parents to their infant's stimuli, observed parent-infant interactions, and assayed parental oxytocin...
متن کامل